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Alzheimer’s disease is a highly heterogeneous disease in which different biomarkers are dynamic over different windows of the dec-
ades-long pathophysiological processes, and potentially have distinct involvement in different subgroups. Subtype and Stage Inference 
is an unsupervised learning algorithm that disentangles the phenotypic heterogeneity and temporal progression of disease biomarkers, 
providing disease insight and quantitative estimates of individual subtype and stage. However, a key limitation of Subtype and Stage 
Inference is that it requires a complete set of biomarkers for each subject, reducing the number of datapoints available for model fitting 
and limiting applications of Subtype and Stage Inference to modalities that are widely collected, e.g. volumetric biomarkers derived 
from structural MRI. In this study, we adapted the Subtype and Stage Inference algorithm to handle missing data, enabling the ap-
plication of Subtype and Stage Inference to multimodal data (magnetic resonance imaging, positron emission tomography, cerebro-
spinal fluid and cognitive tests) from 789 participants in the Alzheimer’s Disease Neuroimaging Initiative. Missing-data Subtype and 
Stage Inference identified five subtypes having distinct progression patterns, which we describe by the earliest unique abnormality as 
‘Typical AD with Early Tau’, ‘Typical AD with Late Tau’, ‘Cortical’, ‘Cognitive’ and ‘Subcortical’. These new multimodal subtypes 
were differentially associated with age, years of education, Apolipoprotein E (APOE4) status, white matter hyperintensity burden and 
the rate of conversion from mild cognitive impairment to Alzheimer’s disease, with the ‘Cognitive’ subtype showing the fastest clinical 
progression, and the ‘Subcortical’ subtype the slowest. Overall, we demonstrate that missing-data Subtype and Stage Inference reveals 
a finer landscape of Alzheimer’s disease subtypes, each of which are associated with different risk factors. Missing-data Subtype and 
Stage Inference has broad utility, enabling the prediction of progression in a much wider set of individuals, rather than being restricted 
to those with complete data.
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Introduction
Alzheimer’s disease is clinically and pathologically heteroge-
neous. This heterogeneity potentially has important implica-
tions for clinical trials as heterogeneity may mask the benefit 
of a treatment that is effective in a particular subgroup.1,2

This motivates recent efforts to unravel the heterogeneous 
temporal progression patterns of Alzheimer’s disease using 
disease biomarkers and their relationship with clinical pres-
entation, genetics, risk factors and multi-morbidity;1-8 this in 
turn potentially enables stratification for more targeted clin-
ical trials and assisting clinicians in patient management.9

Established Alzheimer’s disease biomarkers include CSF10

and PET imaging of amyloid and tau accumulation;11,12

MRI of regional brain atrophy;13 and cognitive test scores.14

As each of these modalities provide different information 
and are likely dynamic at different stages,15 integrating in-
formation from a range of different disease biomarkers is 
key to building a complete picture of Alzheimer’s 
disease.16,17

Data-driven computational models enable the construc-
tion of a quantitative picture of the phenotypic and temporal 
heterogeneity of Alzheimer’s disease. However, most studies 
focus either on temporal (staging)15,18-20 or phenotype (sub-
typing) differences,4,21 which risks conflating disease sub-
types with disease stages. Subtype and Stage Inference 
(SuStaIn)3 is an unsupervised machine learning algorithm 
that uses clustering and data-driven disease progression 
modelling techniques to identify subgroups of individuals 
with distinct disease trajectories. This has the advantage of 
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simultaneously disentangling phenotypic heterogeneity (the 
presence of different disease subtypes) and temporal progres-
sion (different stages of the disease). The algorithm requires 
only cross-sectional data but can use longitudinal data if 
available. To date, SuStaIn applications have mostly 
exploited single-modality datasets, such as MRI or 
PET,3,22 or occasionally two data types such as Tau CSF 
and PET together.23 SuStaIn models built on more diverse 
sets of markers would provide a more complete picture of 
the disease time course and landscape of subtypes.16,17

One of the major challenges when applying SuStaIn to 
multimodal data is ‘missing data’, as many study subjects 
miss one or more modality due to refusal or funding con-
straints.24 Whilst there are several different versions of 
SuStaIn that enable the use of a range of disease progression 
models for different data types,25-28 none are well suited to 
modelling multimodal biomarker data. The most widely 
used version of the SuStaIn algorithm is Z-score SuStaIn.3

Z-score SuStaIn is the most appropriate version of SuStaIn 
to use for most modalities as it models the continuous evolu-
tion of biomarkers from one Z-score to another, capturing 
the gradual change of biomarkers with disease progression. 
However, Z-score SuStaIn currently requires complete data 
for all subjects. Alternative versions of SuStaIn, such as 
event-based SuStaIn25,26,28 and ordinal SuStaIn,27 more 
readily handle missing data but are limited in the types of 
progression and data they can model; event-based SuStaIn 
can only model discrete transitions from a normal to an ab-
normal level, whilst ordinal SuStaIn can only model discrete 
scored data such as visual or neuropathological ratings data.

Here we propose an adaptation of Z-score SuStaIn to al-
low for missing data, which we refer to as missing-data 
SuStaIn. We first validate our implementation of missing- 
data SuStaIn using a synthetic dataset. We use missing-data 
SuStaIn to identify subtypes with distinct progression 
patterns using multimodal data including PET, CSF, 
MRI and cognitive scores from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset. We then evaluate 
the associations between each subtype and demographics, 
cognitive scores, white matter hyperintensity volumes and 
age at death. Finally, we test whether the multimodal sub-
types and stages identified by missing-data SuStaIn provide 
clinical utility for predicting conversion from mild cognitive 
impairment (MCI) to Alzheimer’s disease.

Materials and methods
Subtype and Stage Inference
To estimate subgroup progression patterns, SuStaIn29 simul-
taneously clusters individuals into groups (subtypes) and 
uses disease progression modelling to reconstruct a disease 
progression pattern (set of stages) for each subgroup. 
Z-score SuStaIn models disease progression using a piece-
wise linear Z-score model. The piecewise linear Z-score 
model describes disease progression as a series of stages, 

where each stage corresponds to a new biomarker reaching 
a new Z-score. The Z-score SuStaIn algorithm then consists 
of simultaneously optimizing subtype membership, and 
stage progression, building on the well-established methods 
developed for the event-based model25,26 and incorporating 
ideas from clustering. SuStaIn evaluates each subject’s likeli-
hood of belonging to each subtype and stage, outputting the 
probability each subject belongs to each subtype and stage 
together with their maximum likelihood subtype and stage 
assignment.

The missing data adaptation we propose requires modifi-
cation of the data likelihood. The data likelihood P(X|M) for 
the Z-score model in SuStaIn (derived in detail in Young 
et al.3) can be written as:

P(X|M)

=
􏽙J
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where xij is the measurement of biomarker i in subject j, 
j = 1 … J. C is the number of clusters (subtypes), f is the 
proportion of subjects assigned to a particular cluster 
(subtype), and M is the overall SuStaIn model; k refers 
to disease stage, N number of stages and P(t) is the prior 
likelihood of being at stage k. P(xij|t) is usually modelled 
as a normal distribution around the piecewise linear trajec-
tory gi(t) with variance σi estimated from a control popula-
tion:

P(xij|t) = NormPDF (xij, gi(t), σi). (2) 

The piecewise linear trajectory is described by an ordering 
of a set of N Z-score events E{iZ}, where each event corre-
sponds to the linear increase of a biomarker i = 1 . . . I to a 
Z-score Z{i1} . . . Z{iRi}. Each biomarker trajectory is para-
meterized to start at Z = 0 and end at Z = Zmax.

Missing data adaptation
The strategies for dealing with missing data are described be-
low. Our proposed approach, which we label MD1, was 
benchmarked against alternative pre-processing approaches 
that handle missing data by deleting or inferring missing va-
lues of xij, MD2-4.

MD1: uniform
We handle missing data in SuStaIn by modelling P(xij|t), in 
the absence of xij, and evaluating Eq. (1) using

P(xij|t) = NormPDF(xij, gi(t), σi), xij is present
P′(xij|t) , xij is missing

􏼚

. (3) 

When xij is missing, we propose modelling the distribution 
of xij as uniform over the range of the Z-scores for that 
biomarker, so that P′(xij|t) = 1

Zmax
i

. This strategy means that 
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missing biomarker entries have no effect on the overall pro-
gression pattern estimated by SuStaIn, whilst still enabling 
the available biomarker entries for each participant to con-
tribute to the subtype and stage estimation.

This adaption can be used in both the training phase— 
estimating the subtypes and trajectories—and the 
application phase—assigning subtypes and stages to indivi-
duals. The Python implementation of the SuStaIn algorithm 
(pySuStaIn) was adapted to enable subtype progression pat-
terns to be estimated and to allow subtyping and staging of 
individuals from incomplete data. The implementation can 
be found in the pySuStaIn package29 and is available on 
GitHub (https://github.com/ucl-pond/pySuStaIn).

MD2: deletion
All subjects with one or more missing biomarkers are ex-
cluded from the dataset, as in previous applications of 
Z-score SuStaIn.

MD3: imputing the mean
This approach imputes the missing datapoint as the mean of 
that biomarker over all subjects with non-missing values, i.e. 

xij = 1
J

􏽐J

i=1
xij (where xij is the measurement of biomarker i in 

subject j, j = 1 … J ). It is computationally fast but has clear 
disadvantages such as reducing variance in the dataset.

MD4: imputation using K-nearest neighbours
This approach imputes the missing datapoint as the mean va-
lue of that biomarker over a set of K similar subjects, who are 
identified using K-nearest neighbours (KNN). KNN is a su-
pervised learning algorithm that finds the K-nearest subjects 
using a distance metric.30 As the modalities we wish to im-
pute vary considerably in magnitude, we computed the dis-
tance between subjects using two different subject level 
feature vectors: (i) the mean, range, and standard deviation 
of an individual’s biomarker values; and (ii) an individual’s 
Z-scored biomarker data. Since the biomarkers can vary sig-
nificantly in terms of magnitude, using this feature vector en-
sures that the algorithm can account for the overall statistical 
distribution (mean, range, standard deviation). Now, each 
subject is represented by three dimensions. Using these di-
mensions, we can compute the distance between subjects. 
After establishing the distance metrics, we refer to the origin-
al matrix to inspect the actual biomarker values for the sub-
ject with the missing data. We then impute this missing value 
by calculating the mean of these observed biomarker values. 
In summary, the following iterative procedure based on a 
simple KNN algorithm was computed, for each missing bio-
marker value for each subject: 
1. In the feature vector extracted (composed of either the 

mean, standard deviation, and range for each subject, 
or the Z-scored data), find the K subjects that have the 
most similar features, using Euclidean distance between 
the two vectors being compared.

2. Go to the original data matrix and find the values of the 
missing biomarker from those K most similar subjects.

3. Compute the average of such value and replace the miss-
ing biomarker value.

Datasets
Synthetic dataset
A synthetic dataset of 500 subjects and 10 biomarkers was 
generated to test different approaches to handling missing 
data. The data were simulated as in the original SuStaIn pa-
per.3 The default number of clusters was set to C = 3, and no 
biomarker covariance, setting Σ to the identity matrix. 
SuStaIn stages were simulated using a uniform distribution 
and SuStaIn subtypes, using the following fraction: 
fc = 2 + (C − c)

2C +
􏽐C

C = 1
(C − c)

. Thus, the fraction of subjects belong-

ing to each cluster are f1 = 4
9 , f2 = 3

9 , f3 = 2
9 . The pro-

gression pattern for each cluster is simulated as a linear 
Z-score model with a random monotonic ordering of the 
Z-score events, fixing Zi = (1,2,3) and Zmax

i = 5 for all bio-
markers i. From this dataset, 150 and 2000 random values 
(3% and 40% of the 5000 datapoints) were deleted to mimic 
missing values. The resulting datasets were used to compare 
different approaches to handling missing data. We bench-
marked the performance of each approach to handling miss-
ing data both against each other and against performance on 
the full dataset.

ADNI dataset
Data used in the preparation of this article were obtained 
from the ADNI database (adni.loni.usc.edu). The ADNI 
was launched in 2003 as a public–private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial MRI, PET, 
other biological markers, and clinical and neuropsychologic-
al assessment can be combined to measure the progression of 
MCI and early Alzheimer’s disease. For up-to-date informa-
tion, see www.adni-info.org. Written consent was obtained 
from all participants, and the study was approved by the 
Institutional Review Board at each participating institution.

The inclusion criteria for our study were the availability of 
cross-sectional Freesurfer volumes derived from a 3T MRI 
scan at baseline and that these volumes passed overall quality 
control. Nine follow-up visits (up to Month 42 according to 
ADNI’s records) were also used for experiments in this work 
(see Supplementary Analysis—Longitudinal Consistency). 
The resulting dataset consisted of 789 subjects [182 cogni-
tively normal (CN), 86 significant memory concern (SMC), 
241 early MCI, 163 late MCI and 117 Alzheimer’s disease]. 
For this study, ADNI diagnosis was divided into three cat-
egories: controls (CN), Alzheimer’s disease and MCI. The 
group of controls includes subjects diagnosed as healthy 
and those with subjective memory complaints. Late and 
early MCIs were grouped together as MCI. The downloaded 
Freesurfer values were used to compute the volume of six 
cortical regions (frontal lobe, temporal lobe, occipital lobe, 
parietal lobe, cingulate, insula) and four subcortical regions 
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(hippocampus, amygdala, thalamus and basal ganglia 
formed by the accumbens, pallidum, putamen and caudate).

Several additional biomarkers were downloaded compris-
ing measurements from CSF, PET and cognitive tests. CSF 
measurements included Aβ, tau and p-tau, for which 109 
subjects had missing data. PET measures of florbetapir 
(18F-AV45)-PET averaged of angular, temporal and poster-
ior cingulate; and fluorodeoxyglucose (FDG) mean of whole 
cerebellum, were downloaded from the ADNIMERGE 
spreadsheet. 86 subjects had missing FDG-PET data and 
92 subjects missing AV45 data. Three cognitive test scores 
were selected from the ADNIMERGE spreadsheet/table: 
the Alzheimer’s Disease Assessment Scale-Cognitive 
Subscale (ADAS-Cog 13),31 Rey Auditory Verbal Learning 
Test—RAVLT (RAVLT immediate sum of five trials)32 and 
the time to complete the Trail Making Test 
(TRABSCOR),33 for which only 33 subjects had missing en-
tries. Finally, demographic data (age, sex, education), APOE 
genotype and total intracranial volume were also down-
loaded from ADNIMERGE table for covariate correction. 
Overall, baseline measurements had a total of 3.8% of the 
data missing, of which 60.8% was CSF data, 33% corre-
sponded to missing PET and 6.1%, cognitive data.

Statistical analysis
Evaluation of missing data modelling using synthetic 
data
The synthetic datasets enable evaluation of subtype and 
stage estimates against known ground truth values. To select 
the most effective strategy to deal with missing data, we 
evaluate the results obtained with the different methods. 
The event sequence similarity between two subtype progres-
sion patterns was computed using the Kendall tau distance 
between the sequence of the biomarkers obtained with 
each approach versus the ground truth sequence. 
Subtyping accuracy was reported as the percentage of sub-
jects who were subtyped correctly (the estimated subtype co-
incided with the ground-truth subtype). Finally, the accuracy 
of patient staging is reported per subtype as the mean error ±  
standard deviation (across individuals) between the esti-
mated stage and the ground-truth stage.

SuStaIn modelling in ADNI
All biomarkers were corrected for age, sex, education and, in 
the case of imaging markers, total intracranial volume. The 
correction was performed by estimating a linear regression 
model in a control population of 89 amyloid-negative CN 
participants (CSF Aβ1-42 > 192 pg/ml34), and then propa-
gating this model to all 789 participants for the subset of 
associations that were significant. Baseline data of the cor-
rected biomarkers were then converted into Z-scores relative 
to the control population for use as input to SuStaIn. 
Z-scores of up to 5 were used in this study (1, 2, 3 and 5). 
The minimum biomarker Z-score was set to zero for all bio-
markers, whilst the maximum was set to the rounded 95th 
percentile computed for each biomarker. Biomarkers that 

decrease with disease progression were multiplied by −1 to 
give positive Z-scores that increase with disease progression. 
Longitudinal data used in the Supplementary Analysis of 
Longitudinal Consistency were Z-score transformed and 
covariate corrected using the same method performed in 
the baseline data.

SuStaIn was applied to three different data subsets: (i) all 
789 subjects; (ii) β-amyloid-positive individuals, n = 406, 
(Aβ+); and (iii) β-amyloid-negative individuals, n = 275 
(Aβ−) based on CSF cut-offs according to.34 The optimal 
number of subtypes was chosen by comparing the distribu-
tion of model likelihoods. The individual subject subtype as-
signments under each model were compared using a Sankey 
diagram, a typical diagram used to visualize the directed flow 
between nodes or different sets of values.

Differences between subtypes in age, years of education, 
sex, ADNI diagnosis and number of APOE4 alleles were 
studied using a t-test for continuous variables or chi-square 
test for discrete variables. Memory and executive function 
were also compared between subtypes, computed using the 
Memory and Executive Function Cognitive battery from 
the ADNI-composite scores,35,36 as were white matter hy-
perintensity values (WMHV).37

Predictive utility of SuStaIn
Cox proportional hazard models were used to assess the pre-
dictive utility of SuStaIn for predicting conversion from MCI 
to Alzheimer’s disease. Age, gender, APOE4 status and 
SuStaIn stage were used as covariates. The risk of MCI to 
Alzheimer’s disease conversion was assessed using hazard ra-
tios for SuStaIn subtype and stage. A ratio of 1 means no 
modification of the risk of MCI to Alzheimer’s disease con-
version, a ratio > 1 means increase of risk and ratio < 1, de-
crease of risk.

To further validate missing data SuStaIn and its contribu-
tion to clinical practice, the Cox proportional hazard models 
were fitted to three groups: (i) all subjects; (ii) subjects with 
complete data only; and (iii) subjects with missing data 
only. Results were compared using the 95% confidence 
interval (CI) of resulting hazard ratios for subtype.

Supplementary analysis
Benchmarking modalities
We assessed the importance of different modalities for sub-
typing and staging of individuals by calculating the consist-
ency of subtypes and stages when artificially treating a 
modality as missing versus using their full data as a proxy 
ground truth.

Longitudinal consistency
The consistency of subtyping and staging in longitudinal 
data was also compared for different percentages of missing 
data. Follow-up subtype assignments were deemed longitu-
dinally consistent if: a participant progressed to a subtype 
from ‘normal appearing’ (i.e. no evidence of biomarker ab-
normality and therefore not subtypable); or if they were 
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assigned to the same subtype at follow-up. Follow-up stages 
were deemed longitudinally consistent if a participant re-
mained at the same stage or progressed to a later stage at 
follow-up. The 95% CI was computed by determining the 
set of subtypes and stages that fell within a cumulative prob-
ability of 0.95.

Results
Validation of missing data SuStaIn 
using a synthetic dataset
Table 1 shows that the uniform model of P(xij|t) optimizes 
performance in recovering subtype trajectories in synthetic 
data experiments. For 3% data missing, the uniform distri-
bution approach consistently resulted in the highest correl-
ation between the estimated and ground truth progression 
patterns measured by Kendall Tau rank correlation coeffi-
cient (0.93, 0.97 and 0.89 for clusters 1, 2 and 3, respective-
ly). This approach also produced the most accurate 
subtyping and staging, where 85% of the subjects were clas-
sified correctly compared to the ground-truth subtypes; and 
there was a mean difference of 1.53 (±1.30) stages across in-
dividuals. The uniform distribution approach gave similar 
results when the proportion of missing data was increased 
to 40%. Consequently, the uniform distribution approach, 
which we term ‘missing data SuStaIn’, was used for all fur-
ther analyses.

Multimodal subtypes identified by 
SuStaIn
Figure 1 shows the temporal progression of the five different 
subtypes identified by missing data SuStaIn when applied to 
all 789 subjects from ADNI (Aβ+ and Aβ−). We labelled 
these five different subtypes as: ‘Typical AD Early Tau’, 
‘Typical AD Late Tau’, ‘Cortical’, ‘Cognitive’ and 

‘Subcortical’ according to early characteristic features of 
each progression pattern, however we note that the subtypes 
will have different profiles at different stages as they model 
temporal progression.

Two hundred thirty-five subjects were assigned to the 
‘Typical AD Early Tau’ subtype. This subtype was character-
ized by an early CSF tau, p-tau and PET AV45 change, fol-
lowed by CSF Aβ and cognitive decline. MRI volume 
changes were seen to appear late for this group of subjects. 
The ‘Typical AD Late Tau’ subtype (203 subjects) had a 
very similar progression pattern to the ‘Typical AD Early 
Tau’ subtype; however, in this case, the CSF markers of 
tau and p-tau appear later, after MRI markers change. The 
‘Cortical’ and ‘Cognitive’ subtypes (n = 141 and 58, respect-
ively) were characterized by early cortical atrophy and early 
cognitive decline, respectively. Only 37 subjects were assigned 
to the ‘Subcortical’ subtype, which shows an uncertain pro-
gression pattern with early subcortical atrophy. This suggests 
the subcortical subtype comprises a collection of individuals 
with heterogeneous patterns that have common atrophy in 
subcortical regions such as the amygdala and hippocampus.

Missing-data SuStaIn was also applied to only amyloid- 
positive (Aβ+) (Supplementary Fig. 1) and amyloid-negative 
(Aβ−) (Supplementary Fig. 2) ADNI subjects. Figure 2A
shows a Sankey diagram comparing the subtype assignments 
of Aβ+ individuals based on subtype progression patterns 
(i) learnt in the whole population and (ii) learnt in only 
Aβ+ individuals. Similarly, Fig. 2B shows a Sankey diagram 
comparing the subtype assignments of Aβ− individuals 
based on subtype progression patterns (i) learnt in the whole 
population and (ii) learnt in only Aβ− individuals. 
Application of SuStaIn to Aβ+ subjects recovered four of 
the five subtypes: ‘Typical AD Early Tau’, ‘Typical AD 
Late Tau’, ‘Cortical’ and ‘Cognitive’, whereas application 
of SuStaIn to Aβ− subjects recovered three of the five sub-
types: ‘Cortical’, ‘Cognitive’ and ‘Subcortical’. Thus, 
‘Typical AD Early Tau’ and ‘Typical AD Late Tau’ subtypes 

Table 1 Assessment of performance of different methods for handling missing data

Missing data algorithm
Progression pattern similarity 

Mean Kendall tau distance
Subtype 

% correct

Stage 
Mean diff 

(SD)

3% data missing
Deletion 0.89 79.60 1.84 (1.64)
Mean 0.92 84.20 1.57 (1.32)
KNN biomarkers (feature matrix) 0.91 84.80 1.60 (1.36)
KNN biomarkers (Z-scored) 0.44 60.60 14.25 (7.54)
Uniform distribution 0.93 85.40 1.53 (1.30)

40% data missing
Deletion
Mean 0.69 68.80 2.39 (3.39)
KNN biomarkers (feature matrix) 0.68 46.80 2.44 (2.18)
Uniform distribution 0.86 75.20 2.22 (2.06)

Full data 0.92 85.80 1.54 (1.31)

Comparison metrics include the similarity between the estimated subtype progression patterns and the ground truth, and subject staging and subtyping accuracy. Similarity between the 
three progression patterns is measured using the Kendall Tau coefficient, with 0 indicating no similarity between the progression patterns and 1 indicating identical progression 
patterns. The last experiment, ‘Full data’, benchmarks the performance when there are no missing data to indicate the best possible performance.
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were unique to the Aβ+ group, whereas the ‘Subcortical’ sub-
type appeared only in Aβ− subjects.

Results in the following sections were computed using the 
SuStaIn model learnt from all 789 subjects, unless stated.

Relationship of subtypes with 
demographics and risk factors
Figure 3 and Table 2 show the demographic variables of edu-
cation, age, gender, APOE4 status, amyloid positivity and 
ADNI diagnosis for each SuStaIn-assigned subtype. 
Subjects assigned to the ‘Cognitive’ subtype had a mean of 
1.1 fewer years of education than all other subtypes, this dif-
ference being significant when compared to the ‘Normal 
Appearing’ (P-value = 0.005 cognitive versus normal ap-
pearing t-test), ‘Typical Late Tau’ (P-value = 0.01 cognitive 
versus typical late tau t-test) and ‘Cortical’ (P-value = 0.02 
cognitive versus cortical t-test) subtypes. Individuals with 
the ‘Cortical’ subtype were on average 3.4 years younger 
than any other subtype (P-values < 0.001 versus typical early 
tau, typical late tau, cognitive and subcortical, respectively, 
t-test); and those assigned to the ‘Subcortical’ subtype were 
the oldest (mean 1.93 years; P-values < 0.001 versus typical 
early tau, typical late tau, cognitive and cortical, respectively, 
t-test). Significantly more females were found in the ‘Normal 

appearing’ subtype (4.9% more females; P-values < 0.05 
versus typical late tau, cognitive, cortical and subcortical, re-
spectively, chi-square test) and the ‘Typical Early Tau’ sub-
type (5.5% more females; P-values < 0.05 versus typical 
late tau, cognitive, cortical and subcortical, respectively, chi- 
square test). The proportion of subjects who were APOE4 
positive (one or more APOE4 alleles) and with ADNI diag-
nosis of Alzheimer’s disease was significantly larger in the 
two Typical Alzheimer’s disease subtypes and the 
Cognitive subtype (P-values < 0.02 versus cortical and sub-
cortical, respectively, chi-square test).

A significantly higher proportion of subjects were amyloid 
positive in the ‘Typical Late Tau’ and ‘Typical Early Tau’ 
subtypes, 82% and 85% of the data, respectively (P-values 
< 0.001 versus cognitive, cortical and subcortical t-test, 
respectively). The ‘Subcortical’ subtype had the lowest propor-
tion of amyloid-positive subjects, with only 27% (P-values 
< 0.001 versus typical early tau, typical late tau, cognitive 
and cortical, respectively, t-test). The two Typical Alzheimer’s 
disease subtypes and the Cognitive subtype had the highest pro-
portion of Alzheimer’s disease diagnosed subjects, with 24% 
and 22% of Alzheimer’s disease subjects in each subtype. The 
Cortical and Subcortical subtypes had the lowest proportion 
of Alzheimer’s disease diagnosed subjects; 8% and 11% 
(P-values < 0.0001 versus typical early tau, typical late tau, 

Typical Early Tau, n = 235
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Subcortical, n=37
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Figure 1 SuStaIn subtypes identified in the ADNI dataset. This figure depicts the five subtypes uncovered by SuStaIn and their respective 
progression patterns. At each stage, the colour indicates the level of change compared to controls: white means no change; red means a change of 
Z-score = 1; magenta, Z-score = 2; blue, Z-score = 3 and black, Z-score = 5. The y-axis shows the different biomarkers used for the study, whilst 
the x-axis shows the position of the Z-score events for each biomarker, which ranges from 1 to 45. Insula, Amygdala, Hippocampus, Thalamus, 
FrontalLobe, ParietalLobe, TemporalLobe, OccipitalLobe, Cingulate and BasalGanglia correspond to MRI measurements. Amyloid Beta, Tau and 
phosphorylated tau (pTau) are CSF markers, whilst fluorodeoxyglucose (FDG) and 18F-AV-45 (Florbetapir F-18 AV45) correspond to PET data. 
The Alzheimer’s Disease Assessment Scale (ADAS13), the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test (TRABSCOR) 
are the three cognitive test scores used in this study. N corresponds to the number of subjects belonging to each subtype, excluding those that 
were assigned to the Normal Appearing subtype (SuStaIn stage 0).
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cognitive and cortical, respectively, t-test). MCI diagnosis was 
more prevalent in the Subcortical subtype than all other sub-
types, with 70% of the data belonging to this diagnosis category 
(P-values < 0.0001 versus typical early tau, typical late tau, cog-
nitive and cortical, respectively, t-test).

Figure 4 shows the difference in memory and executive 
function between subtypes. Cognitive subtype subjects 
show the worst performance in both cognitive batteries, 
with −0.1 and −0.6 for memory and executive function, re-
spectively. These scores were significantly lower than all 
other subtypes (memory function and executive function 
cognitive battery P-value < 0.05 cognitive subtype versus 
typical early tau, typical late tau, cortical and subcortical 
t-test), except when comparing memory function with the 
‘typical Early Tau’ subtype.

Prediction of conversion
Supplementary Fig. 3 shows that the different SuStaIn 
subtypes have distinct risks of MCI to Alzheimer’s dis-
ease conversion. By fitting a Cox proportional hazard 
model, we found significant effects of subtype and stage 
in the risk of progressing from MCI to Alzheimer’s dis-
ease, based on ADNI diagnosis labels. Of the SuStaIn 
subtypes, the ‘Cognitive’ subtype was associated with 
the highest rate of progression [HR = 12. 82 (4.20– 
39.1 95% CI) P-value < 0.001], whilst the ‘Subcortical’ 
subtype was associated with the lowest, although 

non-significant [HR = 1.75 (0.40–7.7) P-value = 0.45], 
‘Typical AD Early Tau’ and ‘Typical AD Late Tau’ have 
very similar conversion rate [HR = 6.11 (2.26–16.5) 
P-value < 0.001; and HR = 7.58 (2.83–20.3) P-value <  
0.001], showing a faster conversion than the ‘Cortical’ 
and ‘Subcortical’ subtypes, however slower than 
‘Cognitive’. SuStaIn stage was also found to be significant 
[HR = 1.08 (1.06–1.1) P-value < 0.001] when computing 
MCI to Alzheimer’s disease conversion in ADNI data, 
with each increase in stage corresponding to an 8% in-
crease in the hazard ratio.

Evaluating the effect of missing data 
in the prediction of MCI to 
Alzheimer’s disease conversion
Figure 5 shows the Kaplan–Meier curves for MCI to 
Alzheimer’s disease progression, fit to each of three different 
data subsets: all subjects (number of MCI subjects at base-
line, n = 689), only subjects with complete data at baseline 
(n = 533) and only subjects with missing data at baseline 
(n = 156). In all data subsets, ‘Cognitive’ showed the fastest 
progression, followed by ‘Typical Late Tau’ and ‘Typical 
Early Tau’, which have a very similar rate of progression; 
then ‘Cortical’, and finally ‘Subcortical’ showed the slowest 
MCI to Alzheimer’s disease progression. The overall hazard 
ratios of SuStaIn subtype for each dataset were found to be 
1.10 (0.96–1.26 CI) in all MCI subjects, 1.06 (0.90–1.35 

Figure 2 Two Sankey flows showing subtyping consistency between models. A Normal Appearing subtype was included, consisting of 
those subjects assigned to stage 0. Diagram A compares the 406 Aβ+ subjects, subtyped by the Aβ+ (left) and full data model (right). Diagram B 
compares the 275 Aβ− subjects, subtyped by the Aβ− (right) and full data model (left).
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CI) in the subset of MCI subjects with complete data and 
1.36 (1.00–1.81) in MCI subjects with missing data. The re-
sults show no statistical difference between models, suggest-
ing that missing-data SuStaIn produces accurate enough 
subtype and stage assignments to predict MCI to 
Alzheimer’s disease conversion when data is missing.

Evaluating the effect of multimodal 
data versus MRI only in the prediction 
of MCI to Alzheimer’s disease 
conversion
By performing likelihood ratio tests comparing the predic-
tion of MCI to Alzheimer’s disease conversion using only 
MRI or multimodal data to fit SuStaIn, it was found that 
using missing-data SuStaIn provides a significantly better 

fit for the Cox proportional hazard models than using only 
MRI data (P = 2.20 × 10−6). This shows that using multi-
modal data provides additional information for predicting 
the risk of conversion from MCI to Alzheimer’s disease.

Supplementary analyses
Benchmarking modalities
Supplementary Fig. 4A suggests that the most important mo-
dalities for subtyping are PET/CSF (treated in combination). 
Supplementary Fig. 4B shows that MRI is the modality that 
most strongly affects the staging similarity when different 
biomarkers are removed, leading to a bigger spread of the 
staging results. Supplementary Table 1 demonstrates that 
whilst the uncertainty in the subtypes and stages increases 
when a modality is missing, the CI is representative of the 
true subtype and stage.
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Figure 3 A–F show plots depicting the differences in education, age, gender, diagnosis, APOE status and stage between SuStaIn 
subtypes. A Normal Appearing subtype was added in all experiments, representing those people in stage zero. (A) Boxplots showing the 
distribution of education years in all different subtypes. (B) Boxplot depicting the age distribution in subtypes. Significant differences between 
groups computed via t-tests are marked with three stars for a P-value < 0.001, two stars for P-value < 0.01 and one star for P-value < 0.05. (C) Bar 
plot showing the proportion of female and male subjects in every subtype. A significantly higher number of males were observed between ‘Normal 
Appearing’ versus ‘Typical Late Tau’ (P-value = 0.044), ‘Subcortical’ (P-value = 0.03) and ‘Cognitive’ (P-value = 0.04). ‘Typical Late Tau’ versus 
‘Typical Early Tau’ (P-value = 0.0008). ‘Typical Early Tau’ versus ‘Subcortical’ (P-value = 0.031), and versus ‘Cognitive’ (P-value = 0.029). (D) Bar 
plot depicting the proportion of subjects with zero, one or two APOE4 alleles in each subtype. Significant differences were found between 
‘Normal Appearing’ and both ‘Typical Late Tau’ (P-value < 0.0001) and ‘Typical Early Tau’ (P-value < 0.0001). ‘Typical Late Tau’ showed significant 
differences with ‘Cortical’ (P-value < 0.0001), ‘Subcortical’ (P-value < 0.0001) and ‘Cognitive’ subtypes, with the ‘Cortical’ and ‘Typical Early Tau’ 
pair also showing a significant correlation (P-value < 0.0001). (E) Bar plot showing the proportion of amyloid-positive subjects in each subtype, 
where = were significant differences were found between ‘Normal Appearing’ and ‘Typical Late Tau’ (P-value < 0.0001), ‘Cortical’ (P-value =  
0.002), ‘Typical Early Tau’ (P-value < 0.0001) and ‘Cognitive’ (P-value = 0.01247). ‘Typical Late Tau’ versus ‘Cortical’ (P-value < 0.0001), and 
‘Subcortical’ (P-value < 0.0001), ‘Cognitive’ (P-value < 0.0001). ‘Cortical’ versus ‘Typical Early Tau’ (P-value < 0.0001). ‘Typical Early Tau’ versus 
‘Subcortical’ (P-value < 0.0001), and ‘Cognitive’ (P-value < 0.0001). (F) This bar plot shows the proportion of subjects diagnosed as MCI, 
Alzheimer’s disease or CN in ADNI; divided by subject. Significantly more subjects diagnosed with Alzheimer’s disease were found between 
‘Normal Appearing’ and ‘Typical Late Tau’ (P-value < 0.0001), ‘Cortical’ (P-value = 0.02), ‘Typical Early Tau’ (P-value < 0.0001), ‘Subcortical’ 
(P-value = 0.015) and ‘Cognitive’ (P-value < 0.0001). ‘Typical Late Tau’ versus ‘Typical Early Tau’ (P-value = 0.047), and ‘Cortical’ (P-value = 0.042). 
‘Cortical’ versus ‘Typical Early Tau’ (P-value < 0.0001), and versus ‘Cognitive’ (P-value = 0.008). Statistics for C–F were computed using chi-square 
test. For a complete description of statistics results, please refer to Supplementary Table 3.
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Longitudinal consistency
Supplementary Fig. 5 shows that longitudinal subtype as-
signment is most consistent for individuals with high confi-
dence in subtype assignment at every visit, suggesting that 
SuStaIn provides meaningful estimates of the overall confi-
dence in the subtype assignments. Among subjects that 
were assigned to a subtype with a probability of 0.9 or high-
er, there was baseline to follow-up subtype consistency of 
86.3%. Whilst longitudinal subtype consistency decreased 
with subtype probability, the 95% CIs of the subtype assign-
ments showed a strong correspondence between baseline and 
follow-up, regardless of the subtype probability; the mean 
percentage over all visits of subjects in which the CIs over-
lapped between baseline and follow-up was 100% 
(Supplementary Table 2). This demonstrates the utility of 
the CIs of the SuStaIn subtypes.

Discussion
In this work, we developed and applied missing data SuStaIn 
to model the temporal and phenotypic heterogeneity of an 
Alzheimer’s disease enriched cohort, ADNI, using multi-
modal data. We evaluated alternative methods of handling 
missing data in SuStaIn, finding the most effective way of 
treating missing data using a synthetic dataset, which we 
termed ‘missing-data SuStaIn’. Missing-data SuStaIn may 
be less biased than imputation approaches such as KNN be-
cause it doesn’t make any assumptions about the values of 
the missing biomarkers. Rather than imputing a value 
when a biomarker is missing, missing-data SuStaIn simply 
encodes that there is no information available for that bio-
marker (by using a probability distribution to indicate that 
any biomarker value is equally likely). This feature allows 
missing-data SuStaIn to handle missing data in an unbiased 
manner, estimating subtype progression patterns and per-
forming subtyping and staging based only on the recorded 
data entries. We demonstrated that missing-data SuStaIn 
outperforms alternative methods that impute missing data. 
Our proposed adaptation enabled SuStaIn to be applied to 
a multimodal set of biomarkers, uncovering five subtypes: 
‘Typical AD Early Tau’, ‘Typical AD Late Tau’, ‘Cortical’, 
‘Cognitive’ and ‘Subcortical’, in order of prevalence. The 
‘Typical AD Early Tau’, ‘Typical AD Late Tau’, ‘Cortical’ 
and ‘Cognitive’ subtypes were replicated when running 
missing-data SuStaIn in amyloid-positive individuals only, 
whilst the ‘Subcortical’, ‘Cortical’ and ‘Cognitive’ subtypes 
were also found in amyloid-negative individuals. We found 
that subjects assigned to each subtype had significantly dif-
ferent demographic profiles and rates of MCI to 
Alzheimer’s disease conversion, which could potentially in-
form clinical practice.

‘Typical’ subtypes of Alzheimer’s disease have been re-
peatedly described in atrophy-only studies38-40. By including 
CSF markers in SuStaIn, we found that the typical subtype 
subdivided into a typical subtype with early tau abnormal-
ities ‘Typical Early Tau’ and a typical subtype showing a T
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later tau deposition ‘Typical Late Tau’. The ‘Typical Early 
Tau’ subtype appears to correspond with an archetypical 
pathological progression of Alzheimer’s disease, where tau 
starts accumulating in the brain first but doesn’t reach an ab-
normality threshold until Aβ deposition does.15 Similar sub-
types have previously been found using both SuStaIn3,41 and 
other data-driven methods.38,40,42,43 The ‘Typical Early Tau’ 
subtype contains a large number of individuals with an 
Alzheimer’s disease diagnosis, and a high proportion of 
amyloid-positive and APOE4 positive individuals, reinfor-
cing the correspondence of this subtype to a typical 
Alzheimer’s disease progression pattern.

The ‘Typical Late Tau’ subtype appears to largely reflect a 
typical pattern of Alzheimer’s disease except tau deposition 
happens much later in the disease progression. A similar 
‘late tau’ subtype was found by another study that applied 
SuStaIn to CSF and PET.23 Several other works have previ-
ously studied the differences between subjects presenting a 
typical Alzheimer’s disease progression with high or low le-
vels of Tau. These studies found that those with higher con-
centration of tau were more likely to exhibit an executive 
phenotype of the disease, rather than amnestic44-46. In our 
study, ‘Typical Early Tau’ and ‘Typical Late Tau’ also 

showed significant differences in executive function, with 
subjects assigned to the ‘Typical Early Tau’ subtype (i.e. a 
higher concentration of tau earlier in the disease) having low-
er executive cognitive scores (mean difference = −0.35 
P-value = 0.002). We also found significant differences in to-
tal white matter hyperintensity, with the ‘Typical Late Tau’ 
subtype having significantly higher volumes compared to 
the ‘Normal Appearing’ group. A higher predominance of 
white matter hyperintensities in typical Alzheimer’s subtypes 
has been previously reported,5,38 but here we linked these 
white matter hyperintensities to the late tau group specifical-
ly. ‘Typical AD Late Tau’ and ‘Typical AD Tau First’ were 
shown to have very similar MCI to Alzheimer’s disease pro-
gression rates. This progression rate was faster than most of 
the other subtypes, consistent with previous work.42,43,47

However, in this study, we found that the ‘cognitive’ subtype 
had the fastest rate of conversion.

Subjects assigned to the ‘Cortical’ subtype were younger, 
had the highest educational level and a low percentage of 
APOE4 positivity. The ‘Cortical’ subtype subjects also had 
the best memory function and a slow rate of progression 
from MCI to Alzheimer’s disease. The ‘Cortical’ subtype had 
a lower proportion of individuals that were amyloid positive 

Figure 4 Boxplots showing subtype differences in two cognitive batteries. (A) Memory Function. Significant differences were found 
between ‘Normal Appearing’ versus ‘Typical Early Tau’ (t = 12.83; P-value < 0.0001), ‘Normal Appearing’ versus ‘Typical Late Tau’ (t-statistic =  
10.61; P-value < 0.0001), ‘Normal Appearing’ versus ‘Cortical’ (t = 7.68; P-value < 0.0001), ‘Normal Appearing’ versus ‘Cognitive’ (t = 12.99; 
P-value < 0.0001) and ‘Normal Appearing’ versus ‘Subcortical’ (t = 6.16; P-value < 0.0001). Significant differences were also noted between 
‘Typical Early Tau’ and ‘Cortical’ (t = −3.73; P-value = 0.0012), ‘Typical Late Tau’ and ‘Cognitive’ (t = 4.07; P-value = 0.008) and ‘Cortical’ and 
‘Cognitive’ (t = 5.51; P-value < 0.0001). (B) For executive function, the patterns were similar: ‘Normal Appearing’ versus ‘Typical Early Tau’ (t =  
9.61; P-value < 0.0001), ‘Normal Appearing’ versus ‘Typical Late Tau’ (t = 6.49; P-value < 0.0001), ‘Normal Appearing’ versus ‘Cortical’ (t = 5.98; 
P-value < 0.0001) and ‘Normal Appearing’ versus ‘Cognitive’ (t = 11.70; P-value < 0.0001). Additional significant differences were observed 
between ‘Typical Early Tau’ and ‘Typical Late Tau’ (t = −3.70; P-value = 0.002), ‘Typical Early Tau’ and ‘Cognitive’ (t = 4.91; P-value ≤ 0.0001), 
‘Typical Late Tau’ and ‘Cognitive’ (t = 7.62; P-value < 0.0001), ‘Cortical’ and ‘Cognitive’ (t = 6.55; P-value < 0.0001) and ‘Cognitive’ versus 
‘Subcortical’ (t = −6.53; P-value < 0.0001). All reported P-values are after Bonferroni correction for multiple comparisons. Significant correlations 
between ‘Normal Appearing’ and all other subtypes are not depicted in the figure for easier visualization. Subtype abbreviations: NormalApp, 
Normal Appearing; TypEarlyT, Typical Early Tau; TypLateT, Typical Late Tau.
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(40.5% compared to 82.3% and 84.9% for the two ‘Typical’ 
subtypes) and with an Alzheimer’s disease diagnosis (7.8% 
compared to 23.8% and 15.8% for the ‘Typical’ subtypes), 
suggesting that this subtype reflects a heterogeneous group of 
individuals with cortical atrophy, some of whom may have 
Alzheimer’s disease or pre-symptomatic Alzheimer’s disease, 
but others who may have non-Alzheimer’s disease related 
changes. A subset of these subjects may reflect a hippocampal- 
sparing subtype of Alzheimer’s disease40,42,43 as they exhibit a 
similar set of demographic characteristics and atrophy pro-
gression pattern (starting in cortical regions with a later hippo-
campal atrophy) to previously described hippocampal-sparing 
subtypes. As the ‘Cortical’ subtype had the highest educational 
level, a slow rate of progression from MCI to Alzheimer’s dis-
ease and the best memory function, the ‘Cortical’ group may 
have a higher cognitive reserve and therefore a higher tolerance 
to pathology.48,49 The literature on the rate of decline of cog-
nition in Alzheimer’s disease subtypes is inconclusive,4 with 
some studies suggesting that typical Alzheimer’s disease has 
the fastest rates of decline39,40 and others suggesting that 
hippocampal-sparing Alzheimer’s disease has the fastest rates 
of decline6,50-52 Our study suggests that typical Alzheimer’s 
disease has the fastest rate of decline, however the ‘Cortical’ 
subtype combines individuals across a range of disease stages 
and includes a high proportion of individuals who are amyloid 
negative. It is possible that the rate of decline is faster in indi-
viduals who are amyloid positive.

The ‘Cognitive’ subtype was characterized by the lowest edu-
cational level, a high prevalence of APOE4 positivity, a high 
proportion of individuals with an Alzheimer’s disease diagnosis 
and the fastest MCI to Alzheimer’s disease rate of progression. 
This group had the worst executive and memory function and a 

low burden of WMHV. This group may correspond to previ-
ously described ‘no atrophy’ or ‘minimal atrophy’ sub-
types,39,40,53 which are characterized by subjects showing no 
or minimal atrophy, intermediate age at onset, high amyloid de-
position and low tau pathology. However, in some studies, the 
minimal atrophy subtype has been related with a less aggressive 
disease progression,39 which conflicts with our finding of a fast 
rate of MCI to Alzheimer’s disease progression in the 
‘Cognitive’ subtype. An alternative possibility is that previously 
described minimal atrophy subtypes are consistent with early 
stages of the SuStaIn subtypes as SuStaIn accounts for disease 
severity. The ‘Cognitive’ subtype may represent a subset of in-
dividuals previously assigned to ‘no atrophy’ or ‘minimal atro-
phy’ subtypes.

Finally, the ‘Subcortical’ subtype comprised only a small 
number of subjects, who were mostly male, had a high educa-
tional level, a low percentage of amyloid and APOE4 positivity 
and the best executive function of the subtypes. They also 
presented a high burden of WMHV, which might indicate to 
a group with a strong influence of vascular pathology. 
One possibility is that the ‘Subcortical’ subtype might 
represent previously described limbic predominant subtypes 
of Alzheimer’s disease6,54 due to the similarities in disease 
progression pattern (high atrophy in subcortical areas, such 
as the hippocampus, and a slow disease progression). Some 
studies investigating the role of white matter hyperintensities 
in Alzheimer’s disease subtypes have found that the limbic 
predominant subtype presents with the highest vascular bur-
den,4,38,42 aligning with our finding of higher WMHV. 
However, we also note that the ‘Subcortical’ subtype was the 
only group not replicated when running SuStaIn in amyloid- 
positive individuals only. This suggests that either this subtype 
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Figure 5 MCI to Alzheimer’s disease conversion Kaplan–Meier curve for each subtype. Kaplan–Meier model was fitted with all 
baseline MCI subjects, only baseline MCI subjects with complete data and only baseline MCI subjects with missing data. The prediction of 
conversion patterns for each subtype is maintained in the different data subsets.
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has a very low prevalence or that it is not a true Alzheimer’s dis-
ease subtype.

The present study has a number of limitations that war-
rant consideration in future work. SuStaIn makes a series 
of assumptions to enable modelling of cross-sectional data. 
SuStaIn assumes an arbitrary timescale to create pseudo- 
longitudinal sequences. A temporal version of SuStaIn that 
leverages longitudinal data to learn timescales of progression 
could be a potential way to address this limitation in the fu-
ture.55 SuStaIn assumes that individuals belong to a single 
(subtype) progression pattern with a distinct mode. It is pos-
sible that there is a continuous spectrum of disease progres-
sion patterns, rather than a set of distinct trajectories. 
SuStaIn requires that a set of Z-scores are specified for 
each marker; we chose the Z-scores to be reflective of the 
range of values for each marker. However, specific combina-
tions of Z-scores across markers may be under-represented 
in the dataset, manifesting as uncertainty in the positional 
variance diagrams. SuStaIn currently handles relatively small 
sets of features only. Leveraging a more comprehensive data-
set could offer a richer picture, particularly in combination 
with feature selection strategies to determine the most in-
formative biomarkers or features. Such an approach could 
balance computational efficiency and information richness. 
Our study only considers data from a research setting, fur-
ther work will be required to verify the applicability of our 
findings in broader cohorts, such as population cohorts 
and clinical trials. Moreover, as the ADNI cohort is enriched 
for individuals with Alzheimer’s disease, it is possible that 
earlier stages of the disease are under-represented, which 
could also be investigated in population cohorts.

Our contributions to understanding the phenotypic and 
temporal heterogeneity of Alzheimer’s disease are threefold. 
First, we updated the SuStaIn algorithm to handle missing 
data, including validation experiments, making SuStaIn applic-
able to multimodal data for the first time. Second, we applied 
‘missing data SuStaIn’ to the ADNI dataset to both map out 
the temporal and phenotypic heterogeneity of Alzheimer’s dis-
ease across molecular, imaging and cognitive biomarkers, and 
to characterize the value of each data modality for performing 
patient subtyping. Third, we showed potential clinical utility 
whereby SuStaIn subtypes display considerable variability in 
their conversion of MCI to Alzheimer’s disease. Missing-data 
SuStaIn has broad applications across a wider range of neuro-
degenerative diseases and in other progressive conditions.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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